Introduction to Software Engineering

1.1 Introduction

Software engineering is an interesting subject. In order to understand this subject we will

need to look at a number of examples and case studies. And we will need to see how we

can develop good software and how it could be improved in different scenarios? Before

we move on to software engineering we need to understand what software actually is.

 What is Software?

When we write a program for computer we named it as software. But software is not just

a program; many things other than the program are also included in software.

Some of the constituted items of software are described below.

 Program: The program or code itself is definitely included in the software.

 Data: The data on which the program operates is also considered as part of the

software.

 Documentation: Another very important thing that most of us forget is

documentation. All the documents related to the software are also considered as part

of the software.

So the software is not just the code written in Cobol, Java, Fortran or C++. It also

includes the data and all the documentation related to the program.

 Why is it important?

Undoubtedly software is playing a vital role in all the field of life these days. We can see

many software applications being operated around us in our daily routine.

Some of the major areas in which software has played an important role are identified as

under.

 Business decision-making: Software systems have played a major role in businesses

where you have to analyze your data and on the basis of that analysis you have to

make business decisions. This process of data analysis and decision-making has

become very accurate and easy by the use of software.

 Modern scientific investigation and engineering problem solving: Scientific

investigations and engineering problem solving require an intensive amount of
calculations and data analysis. The accuracy of these analyses is also very important

in scientific applications. This process has become very easy and accurate by the use

of software. For example software systems are becoming more involved in

bioinformatics and the process of DNA decoding is only possible by the use of

software systems. Similarly many astronomical observations are being recorded and

analyzed by the software systems these days.

 Games: We see many computer games these days that interests people of all ages. All

these games are drive through software systems.

 Embedded systems: We see many kinds of gadgets being employed in our daily used

things, like small microcontrollers used in our cars, televisions, microwave ovens etc.

All these systems are controlled through the software.

Similarly in many other fields like education, office automation, Internet applications etc,

software is being used. Due to its central importance and massive use in many fields it is

contributing a lot in terms of economic activity started by the software products. Billions

and trillions of dollars are being invested in this field throughout the world every year.

 Engineering

Before moving on to software engineering lets first discuss something about engineering

itself. If you survey some of the dictionaries then you will find the following definition of

engineering.

“The process of productive use of scientific knowledge is called engineering.”

1.2 Difference between Computer Science and Software Engineering

The science concerned with putting scientific knowledge to practical use.

Webster’s Dictionary

There are many engineering fields like electrical, mechanical and civil engineering. All

these branches of engineering are based on physics. Physics itself is not engineering but

the use of physics in making buildings, electronic devices and machines is engineering.

When we use physics in constructing buildings then it is called civil engineering. When

we use physics in making machines like engines or cars then it is called mechanical

engineering. And when we apply the knowledge of physics in developing electronic

devices then the process is called electrical engineering. The relation of computer science

with software engineering is similar as the relation of physics with the electrical,

mechanical or civil engineering or for that matter the relation of any basic science with

any engineering field. So in this context we can define software engineering as:

”This is the process of utilizing our knowledge of computer science in effective

production of software systems.”

 Difference between Software and Other Systems

Now lets talk something about how a software system is different from any other

systems. For example, how software is different from a car, a TV or the similar systems

or what is the difference between software engineering and other engineering like
mechanical or electrical engineering. Lets look at some of the non-software systems like

TV, Car or an Electric Bulb. The car may be malfunctioned due to some problem in

engine while driving. Similarly an electric bulb may be fused while glowing and a TV

could be dysfunctional while working.

So the major thing that distinguishes a software system from other systems is that;

“Software does not wear out!”

What does that mean?

As we have seen in above example that our non-software systems could be malfunctioned

or crash while working. That mean they are affected by the phenomenon of wear and

tear. They have a particular life and after that they could have some problem and may not

behave and perform as expected. But this is not the case with software. Software systems

does not affect by the phenomenon of wear and tear. If a software has any defect then that

defect will be there from the very first day and that defect normally called bug. That

means if a software is not working then it should not work from the very first day. But

this could not be the case that at a particular point in time a software is functioning well

and after some time the same software is not performing the same task as required. So

software does not have the element of wear and tear. Lets elaborate this point further. We

have just talked about software defects which we call bugs. If a part of a car became wear

out you just need to get a new one from market and replace the damages one with the

new one. And the car will start working properly as it was working previously. Similarly

if an electric bulb got fused then you just need to get a new one and put into the socket in

place of the fused one and your room will again be illuminated. But the case of software

is somewhat different. If a software has a bug then the same process of replacing faulty

part with the new one may not work. You cannot remove the bug by just replacing the

faulty part of software with the new one. Or it will not be as simple that, you go to the

concerned company, get a new CD of that software and it will start working properly. If

the software has a bug and that bug was present in the older CD then that will remain in

the new one. This is a fundamental difference between software and other systems.

Source of Inherent Complexity of Software

Here the subject is again the same that how software systems are different from other

systems. Have you ever noticed that how many different models of a car do a car

manufacturing company release in a year? And how many major changes are made in

new models and what is the frequency of these changes. If you think a little bit on it then

you will realize that once the system is finalized then the changes in new models are of

very minor nature. A drastic change is very unlikely in these kinds of systems. So the

frequency of changes in these systems is very low and of minor nature. Like body shape

could be changed a little, a new gadget could be added and the like but it is very unlikely

that a fundamental change in engine is made. On the other hand if you observe the

activities of a software manufacturing company, you will realize that these companies

make changes of fundamental nature in their software systems. They constantly change

their systems whether in the form of enhancements, in the form of interface change or

they are making a new system altogether. In other words they are making changes in their

systems in many different dimensions. But in non-software systems these kind of changes

are not that much frequent. One of the major reasons of increased bugs in software

systems is this high frequency of change. You can well imagine that if a car

manufacturing company manufacture cars in the similar way then how long these cars

will remain useful, how much effort they have to put to design these cars, how much time

they will require to mature the design, and how much time they would be needing to start

production of such cars. If they try to cut-short that time, meaning that if they try to

release cars after every six-months or a year without proper testing and that release has a

fundamental change then that kind of cars will also have lots of bugs and will not be

road-worthy.

Therefore one of the major reasons of complexity in software is due to its basic nature

that the software passes through a constant process of evolution. The name of the game is

change and evolution all the times in all the dimensions. This change has the direct

impact on software in the form of defects. Therefore software engineers also have to

deals with the challenge of managing this process of change and evolution.

1.3 Software Crisis

What is Software Crisis?

Computer systems were very new and primitive in early fifties and the use of software

was also very limited at that time. It was limited to some scientific applications or used to

process the data of census. In 1960s a great amount of rapid improvement was made in

hardware. New hardware and new computer systems were made available. These

computer systems were far more powerful than the computers of early fifties. It is all

relative, the computers of 1960s are primitive as compare to the computers we have these

days but were far more powerful than the computers of early fifties. More powerful

hardware resulted into the development of more powerful and complex software. Those

very complex software was very difficult to write. So the tools and techniques that were

used for less complex software became inapplicable for the more complex software. Lets

try to understand this with the help of an example.

Let’s imagine a person who use to live in a village and who have constructed a hut for

him to live. Definitely he should have face some problems in the beginning but was

managed to build a hurt for him. Now if you ask him to construct another hut, he may be

able to construct one more easily and in a better way. This new hut may be better than the

first one and he may construct it in a relatively less time. But if you ask him to construct

concrete and iron houses then he may not be able to handle it. Since he made a hut and he

know how to make a place to live so you may expect from him to build concrete and iron

buildings. If this is the case then you should all agree that the building constructed by that

person will not have a stable structure or he may not even be able to build one.

In early 60s software had suffered from the similar kind of problem to which we call

Software Crisis. Techniques that were used to develop small software were not applicable

for large software systems. This thing resulted in the following consequences.
In most of the cases that software which was tried to be build using those old tools

and techniques were not complete.

 Most of the times it was delivered too late.

 Most of the projects were over-budgeted.

 And in most of the case systems build using these techniques were not reliable –

meaning that they were not be able to do what they were expected to do.

As a result of these problems a conference were held in 1960 in which the term software

crisis was introduced. And the major issue discussed was that the development of

software is in crisis and we have not been able to handle its complexities. And the term of

Software Engineering was also coined in the same conference. People have said that, we

should use engineering principles in developing software in the same way as we use these

principles in developing cars, buildings, electronic devices etc. Software engineering is

the result of software crisis when people realized that it is not possible to construct

complex software using the techniques applicable in 1960s. An important result of this

thing was that people had realized that just coding is not enough.

More Complex Software Applications

This conception is also very common these days. People think that if one knows how to

code then that’s sufficient. But just writing code is not the whole story. People have

realized this fact way back in 1960s that only coding is not sufficient to develop software

systems, we also need to apply engineering principles.

1.5 Software Engineering as defined by IEEE:

Let’s look at some of the definitions of software engineering.

Software Engineering as defined by IEEE (International institute of Electric and

Electronic Engineering). IEEE is an authentic institution regarding the computer related

issues.

“The application of a systematic, disciplined, quantifiable approach to the development,

operation, and maintenance of software; that is, the application of engineering to

software.”

Before explaining this definition lets first look at another definition of Software

Engineering given by Ian Somerville.

“All aspects of software production’ Software engineering is not just concerned with the

technical processes of software development but also with activities such as software

project management and with the development of tools, methods and theories to support

software production”.

These definitions make it clear that Software Engineering is not just about writing code.

1.5 Software Engineering
Software Engineering is the set of processes and tools to develop software. Software

Engineering is the combination of all the tools, techniques, and processes that used in

software production. Therefore Software Engineering encompasses all those things that

are used in software production like:

 Programming Language

 Programming Language Design

 Software Design Techniques

 Tools

 Testing

 Maintenance

 Development etc.

So all those thing that are related to software are also related to software engineering.
So all those thing that are related to software are also related to software engineering.

Some of you might have thought that how programming language design could be related

to software engineering. If you look more closely at the software engineering definitions

described above then you will definitely see that software engineering is related to all

those things that are helpful in software development. So is the case with programming

language design. Programming language design is one of the major successes in last fifty

years. The design of Ada language was considered as the considerable effort in software

engineering.

These days object-oriented programming is widely being used. If programming

languages will not support object-orientation then it will be very difficult to implement

object-oriented design using object-oriented principles. All these efforts made the basis of

software engineering.

Well-Engineered Software

Let’s talk something about what is well-engineered software. Well-engineered software is

one that has the following characteristics.

 It is reliable

 It has good user-interface

 It has acceptable performance

 It is of good quality

 It is cost-effective

Every company can build software with unlimited resources but well-engineered software

is one that conforms to all characteristics listed above.

Software has very close relationship with economics. Whenever we talk about

engineering systems we always first analyze whether this is economically feasible or not.

Therefore you have to engineer all the activities of software development while keeping
its economical feasibility intact.
The major challenges for a software engineer is that he has to build software within

limited time and budget in a cost-effective way and with good quality

Therefore well-engineered software has the following characteristics.

 Provides the required functionality

 Maintainable

 Reliable

 Efficient

 User-friendly

 Cost-effective

But most of the times software engineers ends up in conflict among all these goals. It is

also a big challenge for a software engineer to resolve all these conflicts.

The Balancing Act!

Software Engineering is actually the balancing act. You have to balance many things like

cost, user friendliness, Efficiency, Reliability etc. You have to analyze which one is the

more important feature for your software is it reliability, efficiency, user friendliness or

something else. There is always a trade-off among all these requirements of software. It

may be the case that if you try to make it more user-friendly then the efficiency may

suffer. And if you try to make it more cost-effective then reliability may suffer. Therefore

there is always a trade-off between these characteristics of software.

These requirements may be conflicting. For example, there may be tension among the

following:

 Cost vs. Efficiency

 Cost vs. Reliability

 Efficiency vs. User-interface

A Software engineer is required to analyze these conflicting entities and tries to strike a

balance.

Challenge is to balance these requirements.

Software Engineers always confront with the challenge to make a good balance of all

these tings depending on the requirements of the particular software system at hand. He

should analyze how much weight should all these things get such that it will have

acceptable quality, acceptable performance and will have acceptable user-interface.

In some software the efficiency is more important and desirable. For example if we talk

about a cruise missile or a nuclear reactor controller that are droved by the software

systems then performance and reliability is far more important than the cost-effectiveness

and user-friendliness. In these cases if your software does not react within a certain

amount of time then it may result in the disaster like Chernobyl accident.
Therefore software development is a process of balancing among different characteristics

of software described in the previous section. And it is an art to come up with such a

good balance and that art can be learned from experience.

Law of diminishing returns

In order to understand this concept lets take a look at an example. Most of you have

noticed that if you dissolve sugar in a glass of water then the sweetness of water will

increase gradually. But at a certain level of saturation no more sugar will dissolved into

water. Therefore at that point of saturation the sweetness of water will not increase even

if you add more sugar into it.

The law of diminishing act describes the same phenomenon. Similar is the case with

software engineering. Whenever you perform any task like improving the efficiency of

the system, try to improve its quality or user friendliness then all these things involve an

element of cost. If the quality of your system is not acceptable then with the investment

of little money it could be improved to a higher degree. But after reaching at a certain

level of quality the return on investment on the system’s quality will become reduced.

Meaning that the return on investment on quality of software will be less than the effort

or money we invest. Therefore, in most of the cases, after reaching at a reasonable level

of quality we do not try to improve the quality of software any further. This phenomenon

is shown in the figure below.

benefit

cost

Software Background

Caper Jones a renounced practitioner and researcher in the filed of Software Engineering,

had made immense research in software team productivity, software quality, software

cost factors and other fields relate to software engineering. He made a company named

Software Productivity Research in which they analyzed many projects and published the

results in the form of books. Let’s look at the summary of these results.

He divided software related activities into about twenty-five different categories listed in

the table below. They have analyzed around 10000 software projects to come up with
such a categorization. But here to cut down the discussion we will only describe nine of

them that are listed below.

 Project Management

 Requirement Engineering

 Design

 Coding

 Testing

 Software Quality Assurance

 Software Configuration Management

 Software Integration and

 Rest of the activities

One thing to note here is that you cannot say that anyone of these activities is dominant

among others in terms of effort putted into it. Here the point that we want to emphasize is

that, though coding is very important but it is not more than 13-14% of the whole effort

of software development.

Fred Brook is a renowned software engineer; he wrote a great book related to software

engineering named “A Mythical Man Month”. He combined all his articles in this book.

Here we will discuss one of his articles named “No Silver Bullet” which he included in

the book.

An excerpt from “No Silver Bullet” – Fred Brooks

Of all the monsters that fill the nightmares of our folklore, none terrify more than

werewolves, because they transform unexpectedly from the familiar into horrors.

For these we seek bullets of silver that can magically lay them to rest. The

familiar software project has something of this character (at least as seen by the

non-technical manager), usually innocent and straight forward, but capable of

becoming a monster of missed schedules, blown budgets, and flawed projects. So

we hear desperate cries for a silver bullet, something to make software costs drop

as rapidly as computer hardware costs do. Skepticism is not pessimism, however.

Although we see no startling breakthroughs, and indeed, such to be inconsistent

with the nature of the software, many encouraging innovations are under way. A

disciplined, consistent effort to develop, propagate and exploit them should

indeed yield an order of magnitude improvement. There is no royal road, but

there is a road. The first step towards the management of disease was

replacement of demon theories and humors theories by the germ theory. The very

first step, the beginning of hope, in itself dashed all hopes of magical solutions. It

told workers that progress would be made stepwise, at great effort, and that a

persistent, unremitting care would have to be paid to a discipline of cleanliness.

So it is with software engineering today.

So, according to Fred Brook, in the eye of an unsophisticated manager software is like a

giant. Sometimes it reveals as an unscheduled delay and sometimes it shows up in the

form of cost overrun. To kill this giant the managers look for magical solutions. But
unfortunately magic is not a reality. We do not have any magic to defeat this giant. There

is only one solution and that is to follow a disciplined approach to build software. We can

defeat the giant named software by using disciplined and engineered approach towards

software development.

Therefore, Software Engineering is nothing but a disciplined and systematic approach to

software development.

1.6 Summary

 we have discussed the following things related to software engineering.

 What is software engineering?

 Why is it important?

 What is software crisis?

 How software engineering derived from software crisis.

 What is the importance of engineering principles in developing software?

 What is balancing act and how apply in software engineering?

 What is law of diminishing returns?

 And what are the major activities involved in the development of software.
Introduction to Software Development

2.1 Software Development

We have seen in our previous discussion that software engineering is nothing but a

disciplined approach to develop software. Now we will look at some of the activities

involved in the course of software development. The activities involved in software

development can broadly be divided into two major categories first is construction and

second is management. The construction activities are those that are directly related to the

construction or development of the software. While the management activities are those

that complement the process of construction in order to perform construction activities

smoothly and effectively. A greater detail of the activities involved in the construction

and management categories is presented below.

Construction

The construction activities are those that directly related to the development of software,

e.g. gathering the requirements of the software, develop design, implement and test the

software etc. Some of the major construction activities are listed below.

 Requirement Gathering

 Design Development

 Coding

 Testing

Management

Management activities are kind of umbrella activities that are used to smoothly and

successfully perform the construction activities e.g. project planning, software quality

assurance etc. Some of the major management activities are listed below.

 Project Planning and Management

 Configuration Management

 Software Quality Assurance

 Installation and Training

As we have said earlier that management activities are kind of umbrella activities that

surround the construction activities so that the construction process may proceed

smoothly. This fact is empathized in the figure 1. The figure shows that construction is

surrounded by management activities. That is, all construction activities are governed by

certain processes and rules. These processes and rules are related to the management of

the construction activities and not the construction itself.
[image: image7.jpg]Requirem ent Origins and Comparative Costs

Development Phases

O Rate of Growth B Comparartive C osts

2.2 A Software Engineering Framework

Any Engineering approach must be founded on organizational commitment to quality.

That means the software development organization must have special focus on quality

while performing the software engineering activities. Based on this commitment to

quality by the organization, a software engineering framework is proposed that is shown

in figure 2. The major components of this framework are described below.

Quality Focus: As we have said earlier, the given framework is based on the

organizational commitment to quality. The quality focus demands that processes be

defined for rational and timely development of software. And quality should be

emphasized while executing these processes.

Processes: The processes are set of key process areas (KPAs) for effectively manage and

deliver quality software in a cost effective manner. The processes define the tasks to be

performed and the order in which they are to be performed. Every task has some

deliverables and every deliverable should be delivered at a particular milestone.

Methods: Methods provide the technical “how-to’s” to carryout these tasks. There could

be more than one technique to perform a task and different techniques could be used in

different situations.

Tools: Tools provide automated or semi-automated support for software processes,

methods, and quality control
[image: image2.png]Quality Focus

Software Development Loop

Lets now look at software engineering activities from a different perspective. Software

development activities could be performed in a cyclic and that cycle is called software

development loop which is shown in figure 3. The major stages of software development

loop are described below.

Problem Definition: In this stage we determine what is the problem against which we are

going to develop software. Here we try to completely comprehend the issues and

requirements of the software system to build.

Technical Development: In this stage we try to find the solution of the problem on

technical grounds and base our actual implementation on it. This is the stage where a new

system is actually developed that solves the problem defined in the first stage.

Solution Integration: If there are already developed system(s) available with which our

new system has to interact then those systems should also be the part of our new system.

All those existing system(s) integrate with our new system at this stage.

Status Quo: After going through the previous three stages successfully, when we actually

deployed the new system at the user site then that situation is called status quo. But once

we get new requirements then we need to change the status quo.

After getting new requirements we perform all the steps in the software development

loop again. The software developed through this process has the property that this could

be evolved and integrated easily with the existing systems.
[image: image3.png]Figure 3: Software Development Loop

Software Construction
Here once acain look at the construction activities of the software from a different

Software Construction

Here once again look at the construction activities of the software from a different

perspective. This section provides with a sequence of questions that have to answer in

different stages of software development.

1. What is the problem to be solved?

2. What are the characteristics of the entity that is used to solve the problem?

3. How will the entity be realized?

4. How will the entity be constructed?

5. What approach will be used to uncover errors that were made in the design and

construction of the entity?

6. How will the entity be supported over the long term, when users of the entity request

corrections, adaptations, and enhancements?

2.4 Software Engineering Phases

There are four basic phases of software development that are shown in Figure 4.

Vision: Here we determine why are we doing this thing and what are our business

objectives that we want to achieve.

Definition: Here we actually realize or automate the vision developed in first phase. Here

we determine what are the activities and things involved.

Development: Here we determine, what should be the design of the system, how will it

be implemented and how to test it.

Maintenance: This is very important phase of software development. Here we control

the change in system, whether that change is in the form of enhancements or defect

removel.
[image: image4.png]Vision Definition Development Maintenance

Figure 4: Software Engineering Phases

Maintenance

Correction, adaptation, enhancement

For most large, long lifetime software systems, maintenance cost normally exceeds

development cost by factors ranging from 2 to 3.

Boehm (1975) quotes a pathological case where the development cost of an avionics

system was $30 per line of code but the maintenance cost was $4000 per instruction

2.5 Summary

 Software development is a multi-activity process. It is not simply coding.

 Software construction and management

 Software Engineering Framework

 Software development loop

 Software engineering phases

 Importance of Maintenance
Requirement Engineering
3.1 Requirement Engineering
We recall from our previous discussion that software development is not simply coding –it is a multi-activity process. The process of software construction encompasses and includes answers to the following questions:


What is the problem to be solved?


What are the characteristics of the entity that is used to solve the problem?


How will the entity be realized?


How will the entity be constructed?


What approach will be used to uncover errors that were made in the design and construction of the entity?

How will the entity be supported over the long term when users of the entity

request corrections, adaptations, and enhancements?

These questions force us to look at the software development process from different

angles and require different tools and techniques to be adopted at different stages and phases of the software development life cycle. Hence we can divide the whole process in 4 distinct phases namely vision, definition, development, and maintenance. Each one of these stages has a different focus of activity. During the vision phases, the focus is on why do we want to have this system; during definition phase the focus shifts from why to what needs to be built to fulfill the previously outlined vision; during development the definition is realized into design and implementation of the system; and finally during maintenance all the changes and enhancements to keep the system up and running and adapt to the new environment and needs are carried out. Requirement engineering mainly deals with the definition phase of the system. Requirement engineering is the name of the process when the system services and constraints are established. It is the starting point of the development process with the focus of activity on what and not how.
Software Requirements Definitions
Before talking about the requirement process in general and discussing different tools and techniques used for developing a good set of requirements, let us first look at a few definitions of software requirements. Jones defines software requirements as a statement of needs by a user that triggers the development of a program or system. Alan Davis defines software requirements as a user need or necessary feature, function,

or attribute of a system that can be sensed from a position external to that system.

According to Ian Summerville, requirements are a specification of what should be

implemented. They are descriptions of how the system should behave, or of a system

property or attribute. They may be a constraint on the development process of the system.

IEEE defines software requirements as:

1. A condition or capability needed by user to solve a problem or achieve an
objective.
2. A condition or capability that must be met or possessed by a system or system

component to satisfy a contract, standard, specification, or other formally imposed

document.

3. A documented representation of a condition or capability as in 1 or 2.

As can be seen, these definitions slightly differ from one another but essentially say the

same thing: a software requirement is a document that describes all the services provided

by the system along with the constraints under which it must operate.

3.2 Importance of Requirements
Many of the problems encountered in SW development are attributed to shortcoming in

requirement gathering and documentation process. We cannot imagine start building a

house without being fully satisfied after reviewing all the requirements and developing all

kinds of maps and layouts but when it comes to software we really do not worry too

much about paying attentions to this important phase. This problem has been studied in great detail and has been noted that 40-60% of all defects found in software projects can be traced back to poor requirements.
Fred Brooks in his classical book on software engineering and project management “The Mythical Man Month” emphasizes the importance of requirement engineering and writes:
“The hardest single part of building a software system is deciding precisely what to
build. No other part of the conceptual work is as difficult as establishing the
detailed technical requirements, including all the interfaces to people, to
machines, and to other software systems. No other part of the work so cripples the
system if done wrong. No other part is more difficult to rectify later.”
Let us try to understand this with the help of an analogy of a house. If we are at an

advanced stage of building a house, adding a new room or changing the dimensions of some of the rooms is going to be very difficult and costly. On the other hand if this need is identified when the maps are being drawn, one can fix it at the cost of redrawing the map only. In the case of a software development, we experience the exact same phenomenon - if a problem is identified and fixed at a later stage in the software development process, it will cost much more than if it was fixed at and earlier stage.
This following graph shows the relative cost of fixing problem at the various stages of

software development.

[image: image1.png]Management

Ficurel: Development activities

Boehm (1981) has reported that correcting an error after development costs 68 times

more. Other studies suggest that it can be as high as 200 times. Since cost is directly

related with the success or failure of projects, it is clear from all this discussion that

having sound requirements is the most critical success factor for any project.

3.3 Role of Requirements
Software requirements document plays the central role in the entire software

development process. To start with, it is needed in the project planning and feasibility phase. In this phase, a good understanding of the requirements is needed to determine the time and resources required to build the software. As a result of this analysis, the scope of the system may be reduced before embarking upon the software development. Once these requirements have been finalized, the construction process starts. During this phase the software engineer starts designing and coding the software. Once again, the requirement document serves as the base reference document for these activities. It can be clearly seen that other activities such as user documentation and testing of the system would also need this document for their own deliverables.
On the other hand, the project manager would need this document to monitor and track the progress of the project and if needed, change the project scope by modifying this document through the change control process.
[image: image5.jpg]]
©
°
8
8
=
2
5
2
3
3
2
g

Approximate rel

400 -
368

STy

950 - 1 '
i i
i i
i |

300 - i !
i 1
i i

260 | i '
I i
1 i

L 200

150 -

acts betwaen 1974 and 1980
—— IBM AS/400[Kan ot al., 1994]
100
52
501 En
1 3 4 19
'_f_'—'iw T
Requirements Design Integration
Specification Implementation Maintenance

(Analysis)

The following diagram depicts this central role of the software requirement document in

the entire development process
3.4 Some Risks from Inadequate Requirement Process
From the above discussion, it should be clear that the requirements play the most

significant role in the software development process and the success and failure of a

system depends to a large extent upon the quality of the requirement documents.

Following is a list of some of the risks of adopting an inadequate requirement process:

1. Insufficient user involvement leads to unacceptable products.

If input from different types of user is not taken, the output is bound to lack in key

functional areas, resulting in an unacceptable product. Overlooking the needs of

certain user classes (stake holders) leads to dissatisfaction of customers.

2. Creeping user requirements contribute to overruns and degrade product quality.

Requirement creep is one of the most significant factors in budget and time overruns.It basically means identifying and adding new requirements to the list at some advanced stages of the software development process. The following figure shows the relative cost of adding requirements at different stages.
[image: image6.jpg]Construction
Process

[
Documentation

Project
Planning

System
Testing

Project
Tracking

3. Ambiguous requirements lead to ill-spent time and rework.

Ambiguity means that two different readers of the same document interpret the

requirement differently. Ambiguity arises from the use of natural language. Because

of the imprecise nature of the language, different readers interpret the statements

differently. As an example, consider the following Urdu Phrase:
“Rooko mut jane
doo”. Now, depending upon where a reader places the comma in this statement, two

different readers may interpret it in totally different manner. If a comma is palced

after “Rooko”, the sentence will become “Rooko, mut jane doo”, meaning “don’t let
him go”. On the other hand if the comma id placed after
“mut”, the sentence will

become
“Rooko mut, jane doo”, meaning
“let him go”. Ambiguous requirements therefore result in misunderstandings and mismatched expectations, resulting in a wasted time and effort and an undesirable product.
Let us consider the following requirement statement:

The operator identity consists of the operator name and password; the password
consists of six digits. It should be displayed on the security VDU and deposited in the
login file when an operator logs into the system.
This is an example of ambiguous requirement as it is not clear what is meant by “it”
in the second sentence and what should be displayed on the VDU. Does it refer to the

operator identity as a whole, his name, or his password?

4. Gold-plating by developers and users adds unnecessary features.

Gold-plating refers to features are not present in the original requirement document

and in fact are not important for the end-user but the developer adds them anyway

thinking that they would add value to the product. Since these features are outside the

initial scope of the product, adding them will result in schedule and budget overruns.

5. Minimal specifications lead to missing key requirements and hence result in an

unacceptable product.

As an example, let us look at the following requirement. The requirement was stated

as: “We need a flow control and source control engineering tool.” Based upon this

requirement, system was built. It worked perfectly and had all the functionality

needed for source control engineering tool and one could draw all kinds of maps and

drawings. The system however could not be used because there was there was no

print functionality.

Let us now look at the following set of requirement statements for another system:


The system should maintain the hourly level of reservoir from depth sensor situated in the reservoir. The values should be stored for the past six months.

AVERAGE: Average command displays the average water level for a particular sensor between two times.

This is another case of minimal requirements – it does not state how the system

should respond if we try to calculate the average water level beyond the past six

months.

6.
Incompletely defined requirements make accurate project planning and tracking

impossible.

Levels of Software Requirements
Software requirements are defined at various levels of detail and granularity.

Requirements at different level of detail also mean to serve different purposes. We first

look at these different levels and then will try to elaborate the difference between these

with the help of different examples.

1.
Business Requirements:
These are used to state the high-level business objective of the organization or

customer requesting the system or product. They are used to document main system

features and functionalities without going into their nitty-gritty details. They are

captured in a document describing the project vision and scope.

2.
User Requirements:
User requirements add further detail to the business requirements. They are called user requirements because they are written from a user’s perspective and the focus of user requirement describe tasks the user must be able to accomplish in order to fulfill the above stated business requirements. They are captured in the requirement definition document.
3.
Functional Requirements:
The next level of detail comes in the form of what is called functional requirements.

They bring-in the system’s view and define from the system’s perspective the

software functionality the developers must build into the product to enable users to accomplish their tasks stated in the user requirements - thereby satisfying the business requirements.

4.
Non-Functional Requirements
In the last section we defined a software requirement as a document that describes all the services provided by the system along with the constraints under which it must

operate. That is, the requirement document should not only describe the functionality needed and provided by the system, but it must also specify the constraints under which it must operate. Constraints are restrictions that are placed on the choices available to the developer for design and construction of the software product. These kinds of requirements are called Non-Functional Requirements. These are used to

describe external system interfaces, design and implementation constraints, quality

and performance attributes. These also include regulations, standards, and contracts to

which the product must conform.

Non-functional requirement play a significant role in the development of the system. If

not captured properly, the system may not fulfill some of the basic business needs. If

proper care is not taken, the system may collapse. They dictate how the system

architecture and framework. As an example of non-functional requirements, we can

require software to run on Sun Solaris Platform. Now it is clear that if this requirement

was not captured initially and the entire set of functionality was built to run on Windows,

the system would be useless for the client. It can also be easily seen that this requirement

would have an impact on the basic system architecture while the functionality does not

change.

While writing these requirements, it must always be kept in mind that all functional

requirements must derive from user requirements, which must themselves be aligned with

business requirements. It must also be remembered that during the requirement

engineering process we are in the definition phase of the software development where the

focus is on what and not how. Therefore, requirements must not include design or

implementation details and the focus should always remain on what to build and not how

to build.

Let us now look at an example to understand the difference between these different types

of requirements.

Let us assume that we have a word-processing system that does not have a spell checker.

In order to be able to sell the product, it is determined that it must have a spell checker.

Hence the business requirement could be stated as: user will be able to correct spelling
errors in a document efficiently. Hence, the Spell checker will be included as a feature in the

product.

In the next step we need to describe what tasks must be included to accomplish the

above-mentioned business requirement. The resulting user requirement could be as

follows:
finding spelling errors in the document and decide whether to replace each
misspelled word with the one chosen from a list of suggested words.
It is important to

note that this requirement is written from a user’s perspective.

After documenting the user’s perspective in the form of user requirements, the system’s

perspective: what is the functionality provided by the system and how will it help the user

to accomplish these tasks. Viewed from this angle, the functional requirement for the

same user requirement could be written as follows: the spell checker will find and highlight
misspelled words. It will then display a dialog box with suggested replacements. The user will be allowed
to select from the list of suggested replacements. Upon selection it will replace the misspelled word with
the selected word. It will also allow the user to make global replacements.
Finally, a non-functional requirement of the system could require that it must be integrated into the
existing word-processor that runs on windows platform.
Stakeholders
As mentioned earlier, in order to develop a good requirement document, it is imperative

to involve all kinds of user in the requirement engineering process. The first step in

fulfillment of this need is the identification of all the stakeholders in the system.

Stakeholders are different people who would be interested in the software. It is important to recognize that management carries a lot of weight, but they usually are not the actual users of the system. We need to understand that it is the actual user who will eventually use the system and hence accept or reject the product. Therefore, ignoring the needs of any user class may result in the system failure.
A requirement engineer should be cognizant of the fact that stakeholders have a tendency to state requirements in very general and vague terms. Some times they trivialize things.

Different stakeholders have different requirements – sometimes even conflicting. On top of that internal politics may influence requirements.
The role of stakeholders cannot be overemphasized. A study of over 8300 projects

revealed that the top two reasons for any project failure are lack of user input and

incomplete requirements.

The following diagram shows the role of different stakeholders in the setting the system requirements.
